3 Grenzwert und Stetigkeit¹

3.1 Grenzwerte bei Funktionen

In diesem Abschnitt gilt: I ist immer ein beliebiges Intervall, $x_0 \in I$ oder einer der Endpunkte.

3.1.1 Definition

Sei I Intervall, $x_0 \in \mathbb{R}$ und $x_0 \in I$ oder Endpunkt von I und $f: I \setminus \{x_0\} \to \mathbb{R}$. $c \in \mathbb{R}$ heißt Grenzwert oder Limes von f für $x \to x_0$, geschrieben $\lim_{x \to x_0} f(x) = c$ oder $f(x) \to c$ für $x \to x_0$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt mit $|f(x) - c| < \varepsilon$ für alle $x \in I$ mit $0 < |x - x_0| < \delta$.

3.1.2 Bemerkungen

- (1) Der Grenzwert c ist eindeutig bestimmt.
- (2) $\lim_{x\to\infty} f(x) = c$ bedeutet: f ist definiert auf $I = (a, \infty)$ oder $[a, \infty)$ und zu jedem $\varepsilon > 0$ existiert ein k > a mit $|f(x) c| < \varepsilon$ für alle x > k.
- (3) entsprechend: $\lim_{x \to -\infty} f(x)$.

3.1.3 Folgenkriterium

 $\lim_{x\to x_0} f(x)$ existiert genau dann, wenn für jede Folge (x_n) in $I\setminus\{x_0\}$ mit $x_n\to x_0$ $\lim_{n\to\infty} f(x_n)$ existiert. Dieser Grenzwert ist dann unabhängig von (x_n) und gleich $\lim_{x\to\infty} f(x)$.

Beweis:

 $^{^1\}mathrm{Version}$ 194 vom 14. Februar 2006

3.1.4 Rechenregeln

Wenn $f(x) \to \alpha$ für $x \to x_0$ und $g(x) \to \beta$ für $x \to x_0$, so gelten

- (1) $f(x) + g(x) \rightarrow \alpha + \beta$.
- (2) $\lambda f(x) \to \lambda \alpha$.
- (3) $f(x)g(x) \to \alpha\beta$.
- (4) $|f(x)| \rightarrow |\alpha|$.
- (5) $\alpha \leq \beta$, falls $f(x) \leq g(x)$ in $I \setminus \{x_0\}$.
- (6) $\frac{f(x)}{g(x)} \to \frac{\alpha}{\beta}$, falls $\beta \neq 0$. Genauer: Es gibt ein $\sigma > 0$ mit $g(x) \neq 0$ in $(x_0 - \sigma, x_0 + \sigma) \cap I \setminus \{x_0\}$. $\frac{f(x)}{g(x)}$ ist dort definiert und hat den Grenzwert $\frac{\alpha}{\beta}$ für $x \to x_0$

Beweis: von (1)–(5): Folgenkriterium

von (6): Wähle $\varepsilon = \frac{1}{2} \cdot |\beta| > 0$.

Dazu ex. ein $\sigma > 0$ mit $|g(x) - \beta| < \frac{1}{2}|\beta|$ für $0 < |x - x_0| < \sigma, x \in I$.

$$\Rightarrow |g(x)| = |\beta + (g(x) - \beta)| \ge |\beta| - |g(x) - \beta|$$
$$> |\beta| - \frac{1}{2}|\beta| = \frac{1}{2}|\beta|$$

Dann Folgenkriterium.

3.1.5 Beispiele

- (0) Ist f(x) = c für alle $x \in \mathbb{R}$, dann ist $\lim_{x \to x_0} f(x) = c$.
- (1) f(x) = x für $x \in \mathbb{R}$, dann ist $\lim_{x \to x_0} f(x) = x_0$ (Zu $\varepsilon > 0$ setze $\sigma = \varepsilon$).
- (2) Ist $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_p x^p$ ein Polynom vom Grad p mit $a_p \neq 0$ und $a_j \in \mathbb{R}$, dann ist $\lim_{x \to x_0} f(x) = a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_p x_0^p = f(x_0)$ Über Induktion: $\lim_{x \to x_0} x^k = x_0^k$.
- (3) Ist $f(x) = [x] = \text{die größte Ganze Zahl} \le x$, so ist $\lim_{x \to x_0} f(x) = f(x_0)$, falls $x_0 \notin \mathbb{Z}$. Der Limes existiert nicht für $x_0 \in \mathbb{Z}$.
- (4) Es gilt: $\lim_{x\to 1} \frac{x^r-1}{x-1} = r$ für $r\in \mathbf{Q}$. Beweis: Für $r\in \mathbb{N}$:

$$x^{r} - 1 = (x - 1)(x^{r-1} + x^{r-2} + \dots + x + 1)$$

$$\lim_{x \to 1} \frac{x^r - 1}{x - 1} = \lim_{x \to 1} (x^{r-1} + \dots + x + 1) = r \cdot 1 = r$$

3.1.6 Einseitige Grenzwerte

Sei $I = (a, b), x_0 \in (a, b)$ und $f: I \setminus \{x_0\} \to \mathbb{R}$.

Setze $f_{-}(x) = f(x)$ für $a < x < x_0$ und $f_{+}(x) = f(x)$ für $x_0 < x < b$.

Dann ist $f(x_{0\pm}) := \lim_{x \to x_0} f_{\pm}(x)$, falls der rechtsstehende Grenzwert existiert.

Schreibweise: $f(x_{0^{\pm}}) = \lim_{x \to x_{0^{\pm}}} f(x)$.

Bezeichnung: linksseitiger bzw. rechtsseitiger Grenzwert.

Beispiel: f(x) = [x]: $\lim_{x \to x_0} f(x_{0^+})$ und $\lim_{x \to x_0} f(x_{0^-})$ existieren immer.

3.1.7 Satz

$$f(x_{0^+}) = f(x_{0^-}) = c \iff \lim_{x \to x_0} f(x) = c.$$

Beweis: Sei $\varepsilon > 0$. Es ist $|f(x) - c| < \varepsilon$ für $x_0 < x < x_0 + \delta_1$ (rechtsseitig) und für $x_0 - \delta_2 < x < x_0$ (linksseitig).

Setze $\delta = \min\{\delta_1, \delta_2\}$. Dann ist $|f(x) - c| < \varepsilon$ für $x \in I \setminus \{x_0\}, |x - x_0| < \delta$.

3.1.8 Monotone Funktionen

 $f \colon I \to \mathbbm{R}$ heißt monoton wachsend [fallend], wenn aus $x < y \ (x,y \in I)$ folgt:

 $f(x) \le f(y) \ [f(x) \ge f(y)].$

f heißt streng wachsend [fallend], wenn immer < anstelle \leq , bzw. > anstelle \geq gilt.

3.1.9 Satz

Monotone Funktionen haben in jedem Punkt $x_0 \in I$ einseitige Grenzwerte.

Sei z. B.: $a < x_0 < b \text{ und } f \text{ wachsend: } f(x_{0^-}) \le f(x_0) \le f(x_{0^+}).$

Beweis: Sei (x_n) Folge in (a, x_0) mit $x_n \uparrow$ und $x_n \to x_0$.

Dann ist $(f(x_n))$ wachsend und beschränkt: $f(x_n) \leq f(x_0)$. Damit existiert $\lim_{n \to \infty} f(x_n) \leq f(x_0)$.

Nach dem modifizierten Folgenkriterium folgt dann:

Existiert $\lim_{n\to\infty} f(x_n)$ für jede Folge (x_n) in (a,x_0) mit $x_n\uparrow x_0$, so existiert auch $f(x_{0^-})$.

Bei monotonen Funktionen, für die $\lim_{x \to x_0} f(x)$ existiert $(a < x_0 < b)$, ist er $= f(x_0)$.

3.1.10 Cauchykriterium

Es sei $f: I \setminus \{x_0\} \to \mathbb{R}$. Dann existiert $\lim_{x \to x_0} f(x)$ genau dann, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt mit $|f(x) - f(y)| < \varepsilon$ für alle $x, y \in I$, $0 < |x - x_0| < \delta$, $0 < |y - x_0| < \delta$.

Beweis:

"">"
$$\lim_{x \to x_0} f(x)$$
 existiert) wie Folgen.

"
$$\Leftarrow$$
" Sei (x_n) Folge in $I \setminus \{x_0\}, x_n \to x_0$.

 $(f(x_n))$ ist eine Cauchyfolge, weil zu $\varepsilon > 0$ aus der Voraussetzung ein $\delta > 0$ existiert.

Da $x_n \to x_0$ für $n \to \infty$ gibt es ein n_0 mit $|x_n - x_0| < \delta$ für $n \ge n_0$.

Für $n > m \ge n_0$ gilt: $|f(x_n) - f(x_m)| < \varepsilon$.

Damit ist $(f(x_n))$ eine Cauchyfolge und $\lim_{n\to\infty} f(x_n)$ existiert.

Jetzt das Folgenkriterium anwenden $\Rightarrow \lim_{x \to x_0}^{n \to \infty} f(x)$ existiert.

3.2 Stetigkeit

Sei I stets ein Intervall, $f: I \to \mathbb{R}$.

3.2.1 Definition

f heißt stetig im Punkt $x_0 \in I$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt mit $|f(x) - f(x_0)| < \varepsilon$ für alle $x \in I$ mit $|x - x_0| < \delta$.

f heißt stetig (in I), wenn f in jedem $x_0 \in I$ stetig ist. Kurz: $f \in C(I)$ oder $f \in C^0(I)$. Bemerkung: f ist stetig in $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0)$.

3.2.2 Rechenregeln

Sind f, g stetig (in x_0 oder in I), so sind auch folgende Funktionen stetig:

- (a) f+g.
- (b) λf für $\lambda \in \mathbb{R}$.
- (c) $f \cdot g$.
- (d) $\frac{f}{g}$ (falls $g(x) \neq 0$ (in x_0 oder für $x \in I$)). Genauer: $g(x_0) \neq 0$. \Rightarrow es ex. ein $\sigma > 0$ mit $g(x) \neq 0$ in $(x_0 - \sigma, x_0 + \sigma) \cap I = I'$ und $\frac{f}{g}$ als Funktion von I' nach \mathbb{R} ist stetig in x_0 .
- (e) Das Kompositum: Ist $g: I \to J$ stetig (in $x_0 \in I$ oder in ganz I) und ist $f: J \to \mathbb{R}$ stetig (in $y_0 = g(x_0)$ oder im ganzen Intervall J), dann ist auch die Komposition $f \circ g: I \to \mathbb{R}$, $(f \circ g)(x) := f(g(x))$ stetig (in x_0 oder in I).

Beweis: Nur für das Kompositum:

Sei $\varepsilon > 0$: Dann ex. ein $\delta > 0$ mit $|f(y) - f(y_0)| < \varepsilon$ für $y \in J$, $|y - y_0| < \delta$. Zu diesem δ existiert ein $\sigma > 0$ mit $|g(x) - g(x_0)| < \delta$ für alle $x \in I$, $|x - x_0| < \sigma$, d. h. für $x \in I$, $|x - x_0| < \sigma$ gilt: $|(f \circ g)(x) - (f \circ g)(x_0)| < \varepsilon$.

3.2.3 Beispiele

- (1) Polynome sind stetig in IR.
- (2) $f(x) = \sqrt[p]{x}$ ist stetig in $[0, \infty)$ $(p \in \mathbb{N})$.
- (3) $f(x) = x^r$ ist stetig in $(0, \infty)$ für beliebige $r \in \mathbf{Q}$.

Beweis:

- (1) Klar.
- (2) Sei $x_0 \in [0, \infty)$, (x_n) Folge in $[0, \infty)$ mit $x_n \to x_0$. $f(x_n) = \sqrt[p]{x_n} \to \sqrt[p]{x_0}$ (Beispiel bei Folgen). $\Rightarrow \lim_{x \to x_0} f(x) = f(x_0) \Rightarrow f$ ist stetig.
- (3) Sei $r = \frac{p}{q}$ mit $q \in \mathbb{N}$ und $p \in \mathbb{Z}$. $g(x) = x^p$ ist stetig in $(0, \infty)$, falls $p \in \mathbb{N}$ ist; g ist auch stetig für $p \le 0$ $(x^p = \frac{1}{x^{-p}})$. Setze $c^r = \sqrt[q]{x^p} = h(g(x))$, $h(y) = \sqrt[q]{y}$ ist stetig nach Beispiel (2). $\Rightarrow f(x)$ ist stetig.

3.2.4 Satz vom Minimum und Maximum

Ist $f: [a, b] \to \mathbb{R}$ stetig, so hat f Minimum und Maximum, d. h. es gibt $x_* \in [a, b]$ und $x^* \in [a, b]$ mit $f(x_*) \le f(x) \le f(x^*)$ für alle $x \in [a, b]$.

Beweis: Für das Maximum:

Setze $M = \sup\{f(x) : a \le x \le b\}$. Dazu existiert eine Folge (x_n) in [a,b] mit $f(x_n) \to M$ für $n \to \infty$.

Da die Folge (x_n) beschränkt ist, enthält sie eine konvergente Teilfolge (x_{n_k}) mit $x_{n_k} \to x^* \in [a, b]$. Es ist dann $f(x^*) = \lim_{k \to \infty} f(x_{n_k}) = \lim_{n \to \infty} f(x_n) = M$ = Maximum.

Für das Minimum analog.

3.2.5 Nullstellensatz

Sei $f: [a,b] \to \mathbb{R}$ stetig und f(a) < 0 < f(b) [f(a) > 0 > f(b)]. Dann gibt es ein $\xi \in (a,b)$ mit $f(\xi) = 0$. (ξ ist Nullstelle von f.)

Beweis: Zeige: Es gibt eine kleinste (erste) und eine größte (letzte) Nullstelle in (a, b).

Beweis (für f(a) < 0 < f(b), kleinste Nullstelle):

Setze $M = \{x : f(t) < 0 \text{ für } a \le t < x\} \subseteq [a, b] \text{ und } \xi = \sup M \in [a, b]$. Es gilt:

- (i) $M \neq \emptyset$, weil $a \in M$.
- (ii) $\xi > a$, da f(a) < 0 und damit f(t) < 0 in $[a, a + \delta)$, für ein $\delta > 0$.
- (iii) $\xi < b$, da f(b) > 0 und damit f(t) > 0 in $(b \delta, b]$, für ein $\delta > 0$.
- (iv) $a < x < \xi \Rightarrow f(t) < 0$ für $a \le t < x$, d. h. f(x) < 0 in $[a, \xi)$.
- (v) Nach Definition von ξ gibt es eine Folge (x_n) in $(\xi, b]$ mit $x_n \to \xi$ und $f(x_n) \ge 0$. Es ist $f(\xi) = \lim_{x \to \xi_-} f(x) \le 0$ und $f(\xi) = \lim_{n \to \infty} f(x_n) \ge 0$. $\Rightarrow f(\xi) = 0, f(x) < 0$ für $a \le x < \xi$. $\Rightarrow \xi$ ist kleinste Nullstelle.

3.2.6 Zwischenwertsatz

Ist f im Intervall I stetig, so ist J = f(I) ein Intervall, insbesondere gilt: Ist $f(x_1) < y < f(x_2)$, so gibt es ein $x \in (x_1, x_2)$ (falls $x_1 < x_2$), bzw. $x \in (x_2, x_1)$ (falls $x_1 > x_2$) mit f(x) = y, $y \in J$.

Beweis: Setze $m = \inf\{f(x) \colon x \in I\}$ und $M = \sup\{f(x) \colon x \in I\}$.

Zeige: $(m, M) \stackrel{\otimes}{\subseteq} f(I) = J$. Dann ist J = (m, M), (m, M], [m, M) oder [m, M].

Beweis von \otimes : Sei $y \in (m, M)$. Dann existieren $x_1, x_2 \in I$ mit $f(x_1) < y < f(x_2)$.

Dabei ist z. B. $x_1 < x_2 \text{ (oder } x_1 > x_2).$

 $f: [x_1, x_2] \to \mathbb{R}$ ist stetig, g(x) = f(x) - y ist ebenfalls stetig.

$$\frac{g(x_1) = f(x_1) - y < 0}{g(x_2) = f(x_2) - y > 0}$$
 \Rightarrow es existiert ein $\xi \in (x_1, x_2)$ mit $g(\xi) = 0$, d. h. $f(\xi) = y$.

Falls m = M ist $\Longrightarrow f$ ist konstant, $(m, M) = \emptyset \subseteq f(I) = \{m\} =: [m, m].$

3.2.7 Bemerkung:

Ist $f: [a, b] \to \mathbb{R}$ stetig, so ist f([a, b]) = [m, M] mit

$$\left. \begin{array}{c} m \\ M \end{array} \right\} = \left\{ \begin{array}{c} \min \\ \max \end{array} \right\} \left\{ f(x) \colon a \le x \le b \right\}$$

3.2.8 Beispiele

- (a) Sei $f(x) = \frac{|x|}{1-x^2}$ in I = (-1,1). Es ist $f(I) = [0,\infty)$.
- (b) Sei $f(x) = x + \frac{1}{x}$ in $I = (0, \infty)$. Es ist $f(I) = [2, \infty)$.
- (c) Sei $f(x) = a_0 + a_1x + \cdots + a_{2d+1}x^{2d+1}$ mit $a_{2d+1} > 0$ ein Polynom vom ungeraden Grad 2d+1. Es ist $f(\mathbb{R}) = \mathbb{R}$ insbesondere hat f eine Nullstelle.

Beweis

- (a) Es ist $f(x) \ge 0$, f(0) = 0 und $\sup\{f(x): -1 < x < 1\} = +\infty$ (Es ist $f \nearrow \inf[0, 1)$.
- (b) Es ist $f(x) 2 = x 2 + \frac{1}{x} = (\sqrt{x} \frac{1}{\sqrt{x}})^2 \ge 0$ für alle x und = 0 für x = 1. Für $x \to 0$ gilt: $f(x) \to +\infty$: $\sup\{f(x) \colon 0 < x < \infty\} = +\infty$
- (c) Setze $M = \sup\{f(x) : x \in \mathbb{R}\}\$ und $m = \inf\{f(x) : x \in \mathbb{R}\}$:

$$\lim_{x \to \infty} \frac{f(x)}{x^{2d+1}} = \lim_{x \to \infty} \left(a_{2d+1} + \underbrace{\frac{a_{2d}}{x}}_{\to 0} + \dots + \underbrace{\frac{a_0}{x^{2d+1}}}_{\to 0} \right) = a_{2d+1} > 0,$$

d. h. es existiert ein K>0 mit $f(x)>\frac{1}{2}a_{2d+1}x^{2d+1}$ für $x>K\Rightarrow M=0.$ Gleicher Beweis für $m = -\infty$.

3.2.9 Satz über die Umkehrfunktion

Ist f im Intervall I streng monoton und stetig, so existiert die Umkehrfunktion $f^{-1}: J = f(I) \to I$ und sie ist stetig und streng monoton im gleichen Sinn wie f.

Beweis (Für den Fall, daß f wachsend ist):

Aus $x_1 < x_2$ folgt, daß $f(x_1) < f(x_2)$, d. h. daß f injektiv ist.

 f^{-1} ist definiert auf dem Intervall J = f(I).

Zeige nun die Stetigkeit von f^{-1} in $y_0 = f(x_0)$:

Sei (y_n) Folge in J mit $y_n \to y_0$ für $n \to \infty$.

Es ist $y_n = f(x_n), y_0 = f(x_0), x_n, x_0 \in I$.

Zeige: $x_n \to x_0$ für $n \to \infty$.

Wenn nun $x_n \not\to x_0$ (nicht konvergent gegen x_0), dann existiert eine Teilfolge (x_{n_k}) mit z. B. $x_{n_k} \ge x_0 + \varepsilon$ für alle k und für ein $\varepsilon > 0$.

$$\Rightarrow f(x_{n_k}) \ge f(x_0 + \varepsilon)$$

$$\Rightarrow f(x_{n_k}) = y_{n_k} \to y_0 = f(x_0) \ge f(x_0 + \varepsilon) > f(x_0) \text{ Widerspruch!}$$

Also gilt $f^{-1}(y_n) = x_n \longrightarrow x_0 = f^{-1}(y_0)$.

Bemerkung: Für I = [a, b] gilt:

Man kann man eine Teilfolge (x_{n_k}) mit $x_{n_k} \to x_0' \in [a,b]$ auswählen.

Dann ist $f(x'_0) = \lim_{r \to \infty} f(x_{n_k}) = y_0 = f(x_0) \Rightarrow f$ ist injektiv und $x'_0 = x_0$.

Es bleibt noch zu zeigen, daß
$$f^{-1}$$
 streng wachsend ist: $f(x_1) = y_1 < y_2 = f(x_2) \stackrel{f \text{ streng wachsend}}{\Longrightarrow} x_1 < x_2$, also $f^{-1}(y_1) < f^{-1}(y_2)$.

3.2.10 Definition: gleichmäßige Stetigkeit

Eine Funktion $f: I \to \mathbb{R}$ heißt gleichmäßig stetig, wenn gilt: zu jedem $\varepsilon > 0$ gibt es ein $\delta > 0$ mit $|f(x) - f(y)| < \varepsilon \text{ für alle } x, y \in I, |x - y| < \delta.$

3.2.11 Bemerkungen und Beispiele

- (a) Gleichmäßig stetige Funktionen sind stetig in I.
- (b) $f(x) = \frac{1}{x}$ ist in I = (0, 1] stetig, aber nicht gleichmäßig. **Beweis:** $\left| f\left(\frac{1}{n}\right) - f\left(\frac{1}{n+1}\right) \right| = |n - (n+1)| = 1$ $x = \frac{1}{n}, \ y = \frac{1}{n+1} \colon |x - y| = \frac{1}{n(n+1)}$ $\varepsilon = \frac{1}{2}.$ Suche hierzu ein $\delta = ?$ Dieses ex. nicht.
- (c) Lipschitz-stetige Funktionen

 $f: I \to \mathbb{R}$ mit $|f(x) - f(y)| \le L|x - y|$ für alle $x, y \in I$ (L > 0 Lipschitzkonstante). L-stetige Funktionen sind gleichmäßig stetig mit $\delta = \frac{\varepsilon}{T}$ für $\varepsilon > 0$.

(d) $f(x) = \sqrt{1+x^2}$ ist Lipschitzstetig in $I = [0, \infty)$:

$$|f(x) - f(y)| = \left| \left(\sqrt{1 + x^2} - \sqrt{1 + y^2} \right) \right|$$

$$= \frac{|x^2 - y^2|}{\sqrt{1 + x^2} + \sqrt{1 + y^2}}$$

$$= |x - y| \frac{x + y}{\sqrt{1 + x^2} + \sqrt{1 + y^2}}$$

$$\leq |x - y| \left(\frac{x}{\sqrt{1 + x^2}} + \frac{y}{\sqrt{1 + y^2}} \right)$$

$$\leq 2 \cdot |x - y|$$

(e) $f(x) = \sqrt{x}$ ist in $I = [0, \infty)$ gleichmäßig stetig, aber nicht L-stetig. **Beweis:** Es ist $f(x) - f(y) = \frac{x-y}{\sqrt{x}+\sqrt{y}}$. Für z. B. x > y gilt:

$$|f(x) - f(y)| = \frac{x - y}{\sqrt{x} - \sqrt{y}}$$

$$= \underbrace{\frac{\sqrt{x - y}}{\sqrt{x} + \sqrt{y}}}_{\leq 1} \cdot \sqrt{x - y}$$

$$< \sqrt{|x - y|}$$

Setze nun für $\varepsilon > 0$ $\delta = \varepsilon$. Also ist f gleichmäßig stetig. (nicht L-stetig als Aufgabe).

3.2.12 Satz von Heine

Mit der Stetigkeit von f in x_0 gilt dann:

Jede stetige Funktion $f: [a, b] \to \mathbb{R}$ ist gleichmäßig stetig.

Beweis: Nehme an, daß die Behauptung falsch ist, d. h. es gibt ein $\varepsilon > 0$ und zu jedem δ gibt es $x, y \in I$, so daß $|x - y| < \delta$, aber $|f(x) - f(y)| \ge \varepsilon$. Zu $\delta = \frac{1}{n}$ existieren $x_n, y_n \in I$, so daß $|x_n - y_n| < \frac{1}{n}$, aber $|f(x_n) - f(y_n)| \ge \varepsilon$. Die Folge (x_n) in [a, b] besitzt eine konvergente Teilfolge (x_{n_k}) , wobei $x_{n_k} \to x_0 \in [a, b]$, $y_{n_k} \to x_0$.

$$0 = |f(x_0) - f(x_0)| = \lim_{k \to \infty} |f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon \text{ Widerspruch!}$$

Aufgabe: $f:(a,b)\to\mathbb{R}$ ist genau dann gleichmäßig stetig, wenn es eine stetige Funktion F gibt mit $F:[a,b]\to\mathbb{R}$ und F(x)=f(x) in (a,b).

3.3 Gleichmäßige Konvergenz

Sei I ein Intervall, und $f_n : I \to \mathbb{R}$ für $n = 0, 1, 2, \dots$

3.3.1 Def.: Punktweise und gleichmäßige Konvergenz von Funktionenfolgen

Die Funktionenfolge (f_n) konvergiert

- (a) punktweise gegen $f: I \to \mathbb{R}$, wenn $\lim_{n \to \infty} f_n(x) = f(x)$ für alle $x \in I$.
- (b) gleichmäßig gegen $f: I \to \mathbb{R}$, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, mit $|f_n(x) f(x)| < \varepsilon$ für alle $n \ge n_0$ und alle $x \in I$.

Ebenso heißt $\sum_{n=0}^{\infty} f_n(x)$ punktweise oder gleichmäßig konvergent, wenn die Funktionenfolge (s_n) , $s_n = \sum_{k=0}^{n} f_k(x)$, punktweise bzw. gleichmäßig konvergiert.

3.3.2 Beispiele

(1) Sei $f_n(x) = x^n$ in I = [0, 1]. Es ist

$$f_n(x) \to \left\{ \begin{array}{l} 0 \text{ für } 0 \le x < 1 \\ 1 \text{ für } x = 1 \end{array} \right\} = f(x),$$

d. h. f_n ist punktweise konvergent. f_n ist aber nicht gleichmäßig konvergent.

$$|f_n(x) - f(x)| \stackrel{x=1-\frac{1}{n}}{=} \left(1 - \frac{1}{n}\right)^n \to \frac{1}{e} \neq 0 \text{ für } n \to \infty.$$

⇒ keine gleichmäßige Konvergenz.

(2) $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ konvergiert gleichmäßig in jedem Intervall [-r,r], 0 < r < 1, aber nicht gleichmäßig in (-1,1).

Beweis: Sei $|x| \le r$: Dann gilt für $n \ge n_0$

$$\left| \sum_{k=0}^{n} x^k \right| - \left| \frac{1}{1-x} \right| = \left| \sum_{k=n+1}^{\infty} x^k \right| \le \sum_{k=n+1}^{\infty} r^k - \frac{r^{n+1}}{1-r} < \varepsilon,$$

da 0 < r < 1. \Rightarrow gleichmäßige Konvergenz.

Nun für (-1,1): Es ist

$$\sum_{k=0}^{n} x^{k} = \frac{1}{n+1} \cdot 1 - \frac{x^{n} + 1}{1 - x}$$

$$= \frac{1 - \left(1 - \frac{1}{n+1}\right)^{n+1}}{\frac{1}{n+1}}$$

$$= \underbrace{(n+1)}_{\to \infty} \cdot \left(1 - \left(1 - \frac{1}{n+1}\right)^{n+1}\right) \to \infty$$

3.3.3 Satz

Gegeben seien $f_n: I \to \mathbb{R}$ und es gelte $f_n \to f$ gleichmäßig in I. Für $n = 1, 2, \ldots$ existiere $\lim_{x \to x_0} f_n(x) = a_n$. Dann existiert auch $\lim_{x \to x_0} f(x) = \lim_{n \to \infty} a_n$, d. h.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right)$$

Beweis: Sei $\varepsilon > 0$. Dann existiert ein n_0 mit

$$|f_n(x) - f(x)| < \varepsilon$$
 für alle $n \ge n_0$ und alle $x \in I$. (3.1)

Weiter existiert ein $\delta_n > 0$ mit

$$|f_n(x) - a_n| < \varepsilon \text{ für } |x - x_0| < \delta_n \text{ und } x \in I.$$
 (3.2)

Für $n > m > n_0$ gilt dann:

$$|a_n - a_m| = |(a_n - f_n(x)) + (f_n(x) - f(x)) + (f(x) - f_m(x)) + (f_m(x) - a_m)|$$

$$\leq \underbrace{\varepsilon}_{\text{für } |x - x_0| < \delta_n} + \underbrace{\varepsilon}_{n \ge n_0} + \underbrace{\varepsilon}_{m \ge n_0} + \underbrace{\varepsilon}_{\text{für } |x - x_0| < \delta_m} = 4\varepsilon$$

Solche $x \in I$ existieren $\Rightarrow (a_n)$ ist eine Cauchyfolge, $a_n \to a$ für $n \to \infty$

$$\Rightarrow |a_n - a| < \varepsilon \text{ für } n \ge n_1 \tag{3.3}$$

Sei $m \ge n_0$ und $m \ge n_1$ fest. Dann gilt:

$$|f(x) - a| = |(f(x) - f_m(x)) + (f_m(x) - a_m) + (a_m - a)|$$

$$\leq \underbrace{\varepsilon}_{\substack{m \geq n_0 \\ \Rightarrow (3.1)}} + \underbrace{\varepsilon}_{\substack{0 < |x - x_0| \leq \delta_n \\ \Rightarrow (3.2)}} + \underbrace{\varepsilon}_{\substack{m \geq n_1 \\ \Rightarrow (3.3)}} = 3\varepsilon$$

 $\Rightarrow |f(x) - a| < 3\varepsilon$ für $0 < |x - x_0| < \delta_n =: \delta$, d. h. $\lim_{x \to x_0} f(x) = a$.

3.3.4 Satz

Gilt $f_n \to f$ gleichmäßig in I und sind alle f_n stetig (in x_0 oder in I), so ist auch f stetig (in x_0 oder in I).

Beweis: Sei $x_0 \in I$:

$$\lim_{x \to x_0} f(x) = \lim_{n \to \infty} \underbrace{\left(\lim_{x \to x_0} f_n(x)\right)}_{=f_n(x_0)} = f(x_0),$$

d. h. f ist stetig in x_0 .

3.3.5 Cauchykriterium

Die Funktionenfolge (f_n) mit $f_n \colon I \to \mathbb{R}$ konvergiert genau dann gleichmäßig, wenn es zu jedem $\varepsilon > 0$ ein n_0 gibt mit

$$|f_n(x) - f_m(x)| < \varepsilon \text{ für alle } n > m \ge n_0 \text{ und alle } x \in I.$$
 (3.4)

Beweis:

"⇒" (gleichmäßige Konvergenz \Rightarrow (3.4)) wie immer.

"

"Sei $\varepsilon > 0$ und (3.4) gelte für festes $x \in I$. Dann ist $(f_n(x))$ eine Cauchyfolge, d. h. $f_n \to f$

Aus (3.4) folgt für $n \to \infty$, daß $|f(x) - f_m(x)| \le \varepsilon$ für $m \ge n_0$ und alle $x \in I$, d. h. $f_m \to f$ gleichmäßig.

Bemerkung: Für gleichmäßige Konvergenz von $\sum_{k=0}^{\infty} f_k(x)$ lautet (3.4) so:

$$\left| \sum_{k=m+1}^{n} f_k(x) \right| < \varepsilon \text{ für alle } n > m \ge n_0 \text{ und alle } x \in I.$$

3.3.6 Majorantenkriterium

Gilt $|f_n(x)| \leq g_n(x)$ und konvergiert $\sum_{n=0}^{\infty} g_n(x)$ gleichmäßig in I, dann auch $\sum_{n=0}^{\infty} f_n(x)$.

Speziell dann, wenn $|f_n(x)| \le c_n$ für $x \in I$ und $\sum_{n=0}^{\infty} c_n$ konvergiert.

Beweis: Sei $\varepsilon > 0$. Dazu ex. ein n_0 mit $\sum_{k=n+1}^{\infty} g_k(x) < \varepsilon$ für $n > m \ge I_0$ und $x \in I$.

$$\left| \sum_{k=m+1}^{n} f_k(x) \right| \le \sum_{k=m+1}^{n} |f_k(x)| \le \sum_{k=m+1}^{n} g_k(x) < \varepsilon$$

für $n > m \ge n_0$ und $x \in I$.

3.3.7 Beispiele

(1) $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ $(x \in \mathbb{R})$ ist gleichmäßig konvergent, weil $\left| \frac{1}{x^2 + n^2} \right| \leq \frac{1}{n^2}$ und $\sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert (Majorantenkriterium).

$$\lim_{x \to \infty} \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2} = \lim_{n \to \infty} \left(\lim_{x \to \infty} \sum_{k=1}^{n} \frac{1}{x^2 + k^2} \right) = \lim_{n \to \infty} 0 = 0$$

(2) $\sum_{k=0}^{\infty} x^k (1-x)$ konvergiert punktweise in [0,1], aber nicht gleichmäßig. **Beweis:**

$$\sum_{k=0}^{n} x^{k} (1-x) = (1-x) \cdot \begin{cases} \frac{1-x^{n+1}}{1-x} & \text{für } 0 \le x < 1 \\ n+1 & \text{für } x = 1 \end{cases}$$

$$= 1 - x^{n+1}$$

$$\to \begin{cases} 1 & \text{für } 0 \le x < 1 \\ 0 & \text{für } x = 1 \end{cases}$$

ist unstetig, also kann keine gleichmäßige Konvergenz vorliegen.

(3) $\sum_{n=0}^{\infty} x^k (1-x)^2$ konvergiert gleichmäßig in [0,1]. **Beweis:** Sei $\varepsilon > 0$. Dann gilt:

$$s_n(x) \stackrel{x \neq 1}{=} (1-x)^2 \cdot \frac{1-x^{n+1}}{1-x} = (1-x)(1-x^{n+1}) \text{ für } 0 \le x \le 1.$$

$$\left| \sum_{k=m+1}^{n} x^{k} (1-x)^{2} \right| = |s_{n}(x) - s_{m}(x)|$$
$$= |(1-x)(x^{m+1} - x^{n+1})|$$

- (i) Für $0 \le x \le 1 \varepsilon$ ist dies $\le 1(1 \varepsilon)^{m+1} < \varepsilon$ mit $m \ge n_0$.
- (ii) Für $1 \varepsilon < x \le 1$ ist dies $\le \varepsilon \cdot 1$ für alle m.

⇒ gleichmäßige Konvergenz.

(4) $\sum_{n=1}^{\infty} \frac{x}{n^2 + x^2}$ ist nicht gleichmäßig konvergent in ${\rm I\!R}.$

$$\sum_{n=m+1}^{2m} \frac{x}{n^2 + x^2} \ge \frac{xm}{4m^2 + x^2} \stackrel{x=2m}{=} \frac{2m^2}{8m^2} = \frac{1}{4} > 0$$

Aus dem Cauchykriterium folgt dann, daß keine gleichmäßige Konvergenz vorliegt.

(5) $\sum_{n=1}^{\infty} \frac{x}{n^4 + x^2}$ ist gleichmäßig konvergent.

Beweis: Mit dem Majorantenkriterium. Es ist

$$\left| \frac{x}{n^4 + x^2} \right| \le \begin{cases} \frac{n^2}{n_4^4} |x| \le \frac{1}{n^2} & \text{für } |x| \le n^2 \\ \frac{1}{n^2} & \text{für } |x| > n^2 \end{cases} = \frac{1}{n^2}$$

(6) $\sum_{n=1}^{\infty} \frac{x}{n^{2+r} + x^2}$ ist gleichmäßig konvergent für r > 0.

$$\left| \frac{x}{n^{2+r} + x^2} \right| \le \begin{cases} \frac{n^{1+(r/2)}}{n^{2+r}} & \text{für } |x| \le n^{1+(r/2)} \\ \frac{1}{n^{1+(r/2)}} & \text{für } |x| \ge n^{1+(r/2)} \end{cases} = \frac{1}{n^{1+(r/2)}}$$

 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ ist konvergent für $\alpha > 1$. Hier ist $\alpha = 1 + \frac{r}{2}$.

3.4 Potenzreihen

3.4.1 Definition: Potenzreihe

Eine Reihe der Form

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n \tag{3.5}$$

heißt Potenzreihe. Die Folge (a_n) heißt Koeffizientenfolge, und x_0 ist der Entwicklungspunkt.

3.4.2 Satz, Konvergenzradius

Die Potenzreihe (3.5) konvergiert absolut in $(x_0 - r, x_0 + r)$ und gleichmäßig in jedem Intervall $[x_0 - \varrho, x_0 + \varrho] \subseteq (x_0 - r, x_0 + r)$. Sie divergiert für $x > x_0 + r$ und für $x < x_0 - r$. Dabei ist

$$r = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}$$

der Konvergenzradius (Formel von Cauchy-Hadamard).

Sonderfälle:

- 1. Für $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} = \infty$ ist r=0 und (3.5) heißt nirgends konvergent (obwohl konvergent in $x=x_0$).
- 2. Für $\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|} = 0$ ist $r = \infty$ und (3.5) konvergiert überall.

Beweis: Es ist

$$\overline{\lim_{n\to\infty}} \sqrt[n]{|a_n(x-x_0)^n|} = |x-x_0| \overline{\lim_{n\to\infty}} \sqrt[n]{|a_n|}.$$

Daraus folgt absolute Konvergenz nach dem Wurzelkriterium für $|x - x_0| < r$.

Sei nun (3.5) konvergent im Punkt x. Dann gilt $a_n(x-x_0)^n \to 0$ für $n \to \infty$, insbesondere ist $|a_n(x-x_0)| \le M \text{ für } n \in \mathbb{N}_0.$

Damit gilt dann: $|x - x_0| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|a_n|} \le \overline{\lim}_{n \to \infty} \sqrt[n]{M} = 1$.

Daraus folgt $|x - x_0| \le r$ und damit Divergenz für $|x - x_0| > r$.

Zeige nun noch die gleichmäßige Konvergenz in $[x_0 - \varrho, x_0 + \varrho] \subseteq (x_0 - r, x_0 + r)$:

Wähle $\xi = x_0 + \frac{\varrho + r}{2}$ (falls $r > 0, r < \infty$).

Dann ist $|a_n(\xi - x_0)^n| = |a_n| \cdot \left(\frac{\varrho + r}{2}\right)^n \le M$ beschränkt und für $|x - x_0| \le \varrho$ gilt:

$$|a_n(x - x_0)^n| \le |a_n| \cdot \varrho^n \cdot \left(\frac{\varrho + r}{2}\right)^n \cdot \left(\frac{2}{\varrho + r}\right)^n$$

$$\le M \cdot \left(\frac{2\varrho}{\varrho + r}\right)^n$$

$$= :q < 1$$

 $M \cdot q$ ist eine Majorante.

3.4.3 Satz

Hat (3.5) eine positiven Konvergenzradius, so stellt (3.5) eine im Konvergenzintervall stetige Funktion f dar.

Beweis: Sei $I_{\varrho} = [x_0 - \varrho, x_0 + \varrho] \subseteq (x_0 - r, x_0 + r)$. In I_{ϱ} liegt gleichmäßige Konvergenz vor. Damit ist f stetig in I_{ϱ} für $0 < \varrho < r$. Also ist f stetig in $\bigcup_{0 < \varrho < r} I_{\varrho} = (x_0 - r, x_0 + r)$.

3.4.4 Bemerkungen und Beispiele

- (a) Existiert $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = A$, so ist $r = \frac{1}{A}$ (Quotientenkriterium, Aufgabe)
- (b) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ hat Konvergenzradius $r = \infty$.

- (c) $\sum_{n=1}^{\infty} n^{\alpha} x^n$ hat für $\alpha \in \mathbf{Q}$ den Konvergenzradius r=1, denn $\sqrt[n]{n^{\alpha}} \to 1 = \frac{1}{r}$.
- (d) Die Binomische Reihe $\sum_{n=0}^{\infty} {\alpha \choose n} x^n$ hat den Konvergenzradius r=1, falls $\alpha \in \mathbb{R} \setminus \mathbb{N}_0$. Beweis über das Quotientenkriterium (a).
- (e) Sei (a_n) die Fibonaccifolge mit $a_0 = 1$, $a_1 = 1$ und $a_{n+1} = a_n + a_{n-1}$ für $n \ge 1$. **Frage:** Was ist dann

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

und welchen Konvergenzradius hat die Potenzreihe?

Behauptung: $r \ge \frac{\sqrt{5}-1}{2}$.

Versuche zu zeigen: $a_n \leq \varrho^n$ mit einem $\varrho \geq 1$ $(a_n \text{ ist immer } \geq 1)$.

Dies ist o. k. für n = 0 und n = 1.

Induktionsansatz:

$$a_{n+1} = a_n + a_{n-1} \le \varrho^n + \varrho^{n-1} = \varrho^{n-1}(\varrho + 1) \stackrel{?}{\le} \varrho^{n+1}$$

Das "?" ist in Ordnung, wenn $\varrho + 1 \leq \varrho^2$ ist. Suche nun das beste ϱ für $\varrho \geq 1$:

$$\varrho^2 = \varrho + 1$$

$$\varrho = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = \frac{1 + \sqrt{5}}{2}$$

Da $\sqrt[n]{a_n} \leq \varrho$ ist, gilt:

$$\overline{\lim}_{n \to \infty} \sqrt[n]{a_n} \le \varrho \implies r \ge \frac{1}{\varrho} = \frac{2}{1 + \sqrt{5}} = \frac{\sqrt{5} - 1}{2}.$$

Sei nun |x| < r. Dann gilt

$$\iff a_{n+1}x^{n+1} = xa_nx^n + x^2a_{n-1}x^{n-1}$$

$$\iff \sum_{n=1}^{\infty} a_{n+1}x^{n+1} = x \cdot \sum_{n=1}^{\infty} a_n(x^n + x^2 \cdot \sum_{n=1}^{\infty} a_{n-1}x^{n-1})$$

$$\iff (f(x) - a_0 - a_1) = x(f(x) - a_0) + x^2f(x)$$

$$\iff f(x)(1 - x - x^2) = (a_0 + a_1 - a_0)x = 1$$

$$\iff f(x) = \frac{1}{1 - x - x^2}.$$

Wann ist $x^2 + x - 1 = 0$? Für $x = -\frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} = -\frac{1 \mp \sqrt{5}}{2}$! Also ist $r = \frac{\sqrt{5} - 1}{2}$.

3.4.5 Satz: Summe und Produkt von Potenzreihen

Haben $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ und $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$ die Konvergenzradien $r_f > 0$ und $r_g > 0$, so gilt:

3 Grenzwert und Stetigkeit

(a)
$$f(x) + g(x) = \sum_{n=0}^{\infty} (a_n + b_n)(x - x_0)^n$$
 mit Konvergenzradius $r \ge \min\{r_f, r_g\}$.

(b)
$$f(x) \cdot g(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$
 mit $c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k$ und Konvergenzradius $r \ge \min\{r_f, r_g\}$.

Beweis:

- (a) Summe konvergenter Reihen.
- (b) Cauchyprodukt:

$$f(x)g(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k (x - x_0)^k b_{n-k} (x - x_0)^{n-k},$$

falls $|x - x_0| < r_f \text{ und } |x - x_0| < r_g$.

Beispiel zu (b): Es ist
$$f(x) = \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 für $|x| < 1$ und
$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n.$$
 Frage: Was ist die Potenzreihe für $\frac{1}{(1-x)^p}$ $(p=3, p \ge 3)$?

3.4.6 Identitätssatz

Haben $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ und $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$ positiven Konvergenzradius, und es ist f(x) = g(x) für $x = x_1, \dots, x_n$ mit $x_k \to x_0$ für $k \to \infty$, aber $x_k \neq x_0$. Dann ist $a_n = b_n$ für alle $n = 0, 1, 2, \dots$

Beweis: Annahme: Nicht für alle n gelte $a_n = b_n$. Setze

$$h(t) = \sum_{n=0}^{\infty} (a_n - b_n)t^n \qquad (h(x - x_0) = f(x) - g(x))$$
$$= \sum_{n=0}^{\infty} c_n t^n \qquad (c_n = a_n - b_n).$$

Nach Annahme exisiert ein kleinstes m mit $c_m \neq 0$. Es ist also

$$h(t) = \sum_{n=m}^{\infty} c_n t^n = t^m (c_m + c_{m+1}t + c_{m+1}t^2 + \cdots) = t^m \cdot \tilde{h}(t)$$

und für $t_k = (x_k - x_0) \neq 0, t_k \rightarrow 0$ gilt:

$$h(t_k) = 0 = \underbrace{t_k^m}_{\neq 0} \cdot \tilde{h}(t_k),$$

also $\tilde{h}(t_k) = 0$. D.h. $\tilde{h}(0) = 0 = c_m \neq 0$ Widerspruch!

3.4.7 Beispiele

(a) Sei
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 mit Konvergenzradius $r > 0$.

(a) Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ mit Konvergenzradius r > 0. Ist nun $a_{2n} = 0$ für $n = 0, 1, 2, \ldots$, dann ist f eine ungerade Funktion, d.h. f(-x) = -f(x). Gilt umgekehrt f(-x) = -f(x) in einem Intervall $(-\delta, \delta) \subseteq$ Konvergenzintervall, dann ist $a_{2n} = 0$ für n = 0, 1, 2, ... **Beweis:** $f(x) + f(-x) = 0 = \sum_{n=0}^{\infty} (a_n - (-1)^n a_n) x^n$.

Aus dem Identitätssatz folgt, daß $a_n = (1 + (-1)^n) = 0$ für alle n, insbesondere ist $a_{2k} = 0$.

Beweis:
$$f(x) + f(-x) = 0 = \sum_{n=0}^{\infty} (a_n - (-1)^n a_n) x^n$$

(b) Sei
$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 mit Konvergenzradius $r > 0$.

(b) Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$ mit Konvergenzradius r > 0. Dann ist f gerade (f(-x) = f(x) in $(-\delta, \delta))$ genau dann, wenn $a_{2n-1} = 0$ ist für $n = 1, 2, \ldots$ **Beweis:** f(x) - f(-x) = 0... usw

3.4.8 Satz über die Verknüpfung von Potenzreihen

$$f(y) = \sum_{n=0}^{\infty} b_n y^n$$
 habe Konvergenzradius $R > 0$

$$g(x) = \sum_{n=1}^{\infty} a_n x^n$$
 ($g(0) = 0$ Entwicklungsmittelpunkt für f -Reihe)

Dann hat f(g(x)) eine Potenzreihenentwicklung $f(g(x)) = \sum_{n=0}^{\infty} c_n x^n$

mit Konvergenzradius $r \geq \varrho$, ϱ so, daß $\sum_{n=1}^{\infty} |a_1| \varrho^n < R$ ist.

ohne Beweis

3.4.9 Beispiel

Sei
$$f(y) = \sum_{n=0}^{\infty} \frac{y^n}{n!}$$
 und $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

Suche die Koeffizienten c_0, c_1, \ldots, c_5 von $f(g(x)) = \sum_{n=0}^{\infty} c_n x^n$. Es ist

$$\begin{split} f(g(x)) = &1 + \frac{1}{1!} \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \cdots \right) + \frac{1}{2!} \left(x - \frac{x^3}{3!} \pm \cdots \right)^2 \\ &+ \frac{1}{3!} \left(x - \frac{x^3}{3!} \pm \cdots \right)^3 + \frac{1}{4!} (x \mp \cdots)^4 + \frac{1}{5!} (x \mp \cdots)^5 + \cdots \\ = &1 + \left(x - \frac{x^3}{6} + \frac{x^5}{120} \right) + \frac{1}{2} \left(x^2 - \frac{x^4}{3} \right) \\ &+ \frac{1}{6} \left(x^3 - 3\frac{x^5}{6} \right) + \frac{1}{24} x^4 + \frac{1}{120} x^5 + \cdots \\ = &1 + x + \frac{1}{2} x^2 + \left(-\frac{1}{6} + \frac{1}{6} \right) x^3 \\ &+ \left(-\frac{1}{6} + \frac{1}{24} \right) x^4 + \left(\frac{1}{120} - \frac{1}{12} + \frac{1}{120} \right) x^5 + \cdots \\ = &1 + 1x + \frac{1}{2} x^2 + 0x^3 - \frac{1}{8} x^4 - \frac{1}{15} x^5 + \cdots \end{split}$$

3.4.10 Satz über das Reziproke einer Potenzreihe

 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ habe Konvergenzradius r > 0, $a_0 \neq 0$ ($\Rightarrow f(0) \neq 0$). Dann ist $\frac{1}{f(x)} = \sum_{n=0}^{\infty} c_n x^n$ mit positivem Konvergenzradius, und es gilt:

$$\sum_{k=0}^{n} a_k c_{n-k} = \begin{cases} 1 & \text{für } n = 0\\ 0 & \text{für } n \ge 1 \end{cases}$$
 (3.6)

Beweis: Definiere (c_n) durch (3.6). Dann hat $\Phi(x) = \sum_{n=0}^{\infty} c_n x^n$ positiven Konvergenzradius. Es gilt:

$$f(x) \cdot \Phi(x) = \sum_{n=0}^{\infty} (a_n x^n) \cdot \sum_{n=0}^{\infty} (c_n x^n)$$
$$= \sum_{n=0}^{\infty} \underbrace{\left(\sum_{k=0}^{n} a_k c_{n-k}\right)}_{\substack{0 \text{ für } n \ge 1\\1 \text{ für } n=0}} \cdot x^n = 1,$$

d.h. $\Phi(x) = \frac{1}{f(x)}$.

Konvergenzbeweis für
$$a_0 = 1$$
 $\left(\text{sonst: } \frac{1}{f(x)} = \frac{1}{a_0\left(\frac{f(x)}{a_0}\right)} = \frac{1}{a_0} \cdot \frac{1}{1 - \sum\limits_{n=1}^{\infty} \left(\frac{a_n}{a_0}\right) x^n} \right).$

Es gibt ein $A \ge 1$ mit $|a_n| \le A^n$ (\Longrightarrow Konvergenzradius r > 0)

Zeige: $|c_n| \leq (2A)^n$, d.h. Konvergenzradius $\geq \frac{1}{2A}$.

Induktionsanfang: $|c_0| = 1 \le (2A)^0$. \checkmark

Induktionsschritt:

$$|c_n| = \left| -\sum_{k=0}^{n-1} a_{n-k} c_k \right| \le \sum_{k=0}^{n-1} \left| \underbrace{a_{n-k}}_{\le A^{n-k}} \right| \cdot \left| \underbrace{c_k}_{\le (2A)^k} \right|$$

$$\le \sum_{k=0}^{n-1} 2^k A^n = A^n \sum_{k=0}^{n-1} 2^k = A^n \cdot (2^n - 1) < (2A)^n$$

Induktionsbeweis \checkmark

3.4.11 Beispiel

Sei
$$f(x) = 1 - 3x^2 + x^3 - x^5 + \cdots$$
 und $\frac{1}{f(x)} = \sum_{n=0}^{\infty} c_n x^n$. Suche c_0, c_1, c_2, c_3 .

$$a_0 = 1 \qquad \qquad a_0 c_0 = 1 \qquad \Rightarrow c_0 = 1$$

$$a_1 = 0 \qquad \qquad a_0 c_1 + a_1 c_0 = 0 \qquad \Rightarrow c_1 = 0$$

$$a_2 = -3 \qquad \qquad a_0 c_2 + a_1 c_1 + a_2 c_0 = 0 \qquad \Rightarrow c_2 = 3$$

$$a_3 = 1 \qquad \qquad a_0 c_3 + a_1 c_2 + a_2 c_1 + a_3 c_0 = 0 \qquad \Rightarrow c_3 = -1$$

2. Methode: Für |t| < 1 ist

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n = 1 + t + t^2 + t^3 + \cdots$$

$$\frac{1}{1 - 3x^2 + x^3 - x^5 + \dots} = \frac{1}{1 - (3x^2 - x^3 + x^5 \mp \dots)}$$

$$= 1 + (2x^2 - x^3 + x^5 + \dots)$$

$$+ (3x^2 - x^3 + x^5 + \dots)^2 + \dots$$

$$= 1 + 3x^2 - x^3 + 9x^4 + \dots$$

3.4.12 Umentwickeln von Potenzreihen

Sei
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 in $I = (x_0 - r, x_0 + r)$.
Für $x_1 \in I$ gilt

$$x - x_0 = x - x_1 + x_1 - x_0$$

und es ist nach dem binomischen Satz

$$(x - x_0)^n = \sum_{k=0}^n \binom{n}{k} (x - x_1)^k (x_1 - x_0)^{n-k}.$$

Es gilt dann

$$f(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} {n \choose k} a_n (x_1 - x_0)^{n-k} (x - x_1)^k$$
$$= \sum_{k=0}^{\infty} b_k (x - x_1)^k$$

Was ist nun b_k ? Wir sind in $|x - x_1| < r - |x_1 - x_0|$ auf der sicheren Seite:

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} a_n (x_1 - x_0)^{n-k} (x - x_1)^k$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \binom{n}{k} a_n (x_1 - x_0)^{n-k} (x - x_1)^k$$

$$= \sum_{k=0}^{\infty} \left[\sum_{n=0}^{\infty} \binom{n}{k} a_n (x_1 - x_0)^{n-k} \right] \cdot (x - x_1)^k$$

$$\Rightarrow b_k = \sum_{n=k}^{\infty} \binom{n}{k} a_n (x_1 - x_0)^{n-k}$$

3.4.13 Beispiel

Es ist $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ in (-1,1). Umentwicklung von $x_0 = 0$ auf $x_1 = -\frac{1}{2}$:

$$\frac{1}{1-x} = \sum_{k=0}^{\infty} b_k \left(x + \frac{1}{2} \right)^k$$

mit
$$b_k = \sum_{n=k}^{\infty} \binom{n}{k} \left(\frac{1}{2}\right)^{n-k} = ?$$

$$\frac{1}{1-x} = \frac{1}{1-\left(x+\frac{1}{2}\right)+\frac{1}{2}} = \frac{2}{3} \cdot \frac{1}{1-\frac{2}{3}\left(1+\frac{1}{2}\right)}$$

$$= \frac{2}{3} \cdot \sum_{k=0}^{\infty} \left(\frac{2}{3}\left(x-\frac{1}{2}\right)\right)^k$$

$$= \sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^{k+1} \left(x+\frac{1}{2}\right)^k$$

Daraus folgt ein Konvergenzradius $r = \frac{3}{2}$.

3.4.14 Abelscher Grenzwertsatz

Konvergiert $\sum_{n=0}^{\infty} a_n$, so konvergiert $\sum_{n=0}^{\infty} a_n x^n$ gleichmäßig in [0,1] und dabei gilt $\sum_{n=0}^{\infty} a_n = \lim_{x \to 1-} f(x)$.

Beweis: Sei $r_n = \sum_{k=n}^{\infty} a_k$. Für n > m und $0 \le x \le 1$ gilt:

$$\sum_{k=m+1}^{n} a_k x^k = \sum_{k=m+1}^{n} r_k x^k - \sum_{k=m+1}^{n} r_{k+1} x^k = \sum_{k=m+1}^{n} r_k x^k - \sum_{j=m+2}^{n+1} r_j x^{j-1}$$
$$= r_{m+1} x^{m+1} - \sum_{k=m+2}^{n} r_k (x^k - x^{k-1})$$

Sei $\varepsilon > 0$. Dann gibt es ein n_0 mit $|r_k| < \varepsilon$ für $k \ge n_0$. Für $0 \le x \le 1$ und $n > m \ge n_0$ gilt also:

$$\left| \sum_{k=m+1}^{n} a_k x^k \right| = \left| r_{m+1} x^{m+1} - \sum_{k=m+2}^{n} r_k (x^k - x^{k-1}) \right|$$

$$\leq \varepsilon \cdot 1 + \sum_{k=m+2}^{n} \varepsilon \cdot (x^{k-1} - x^k) + \varepsilon \cdot 1$$

$$= 2\varepsilon + \varepsilon (x^{m+1} - x^{m+2} + x^{m+2} - \dots + x^{n-1} - x^n)$$

$$\leq 2\varepsilon + \varepsilon = 3\varepsilon$$

Also gleichmäßige Konvergenz nach Cauchykriterium.

3.5 Exponentialfunktion und Logarithmus

3.5.1 Definition der Exponentialfunktion $\exp(x)$

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 ist die Exponentialfunktion oder Exponentialreihe

3.5.2 Satz: Eigenschaften der Exponentialfunktion

Die Exponentialfuntkion ist stetig, streng monoton wachsend, $\exp(\mathbb{R}) = (0, \infty)$ und es gilt die Funktionalgleichung

$$\exp(x) \cdot \exp(y) = \exp(x+y) \tag{3.7}$$

Beweis: Die Exponentialfunktion ist stetig in IR als eine überall konvergente Potenzreihe, (3.7) war Aufgabe 4a auf Blatt 6.

Monotonie: Sei x < y = x + h mit h > 0:

$$\exp(y) = \exp(x) \cdot \exp(x) > \exp(x)$$
, falls $\exp(x) > 0$

$$\exp(h) = \sum_{n=0}^{\infty} \frac{h^n}{n!} = 1 + h + \frac{h^2}{2} + \dots > 1.$$

Setze nun in (3.7) y = -x. Dann gilt $\exp(x) \cdot \exp(-x) = \exp(0) = 1$. Also ist $\exp(-x) = \frac{1}{\exp(x)}$, insbesondere ist $\exp(x) \neq 0$ und $\exp(0) = 1$. Aus dem Zwischenwertsatz folgt dann, daß $\exp(x) > 0$ ist.

Ist c > 0, so existieren $x_1, x_2 \in \mathbb{R}$ mit $\exp(x_1) < c < \exp(x_2)$, denn $\exp(x) = 1 + x + \cdots > x \to \infty$ für $x \to \infty$. $\Rightarrow x_2$ existiert. Da aber auch $\exp(-x) = \frac{1}{\exp(x)} \to 0$ für $x \to \infty$ existiert auch x_1 . Wende nun den Zwischenwertsatz auf die Ungleichung $\exp(x_1) < c < \exp(x_2)$ an. Daraus folgt, daß ein $x \in (x_1, x_2)$ existiert mit $\exp(x) = c$.

3.5.3 Definition des Logarithmus $\log x$

Die Umkehrfunktion der Exponentialfunktion, der *Logarithmus*, existiert, ist stetig und ist streng monoton wachsend in $(0, \infty)$. Es gilt:

$$\log(x \cdot y) = \log(x) + \log(y) \tag{3.8}$$

Beweis: Alles bis auf (3.8) folgt aus dem Satz über die Umkehrfunktion. Seien nun $x = \exp(s)$ und $y = \exp(t)$. Dann gilt:

$$\log(x \cdot y) = \log(\exp(s) \exp(t)) = \log(\exp(s+t)) = s + t = \log(x) + \log(y)$$

3.5.4 Satz

- (a) $1 + x < \exp(x)$ für alle $x \neq 0$.
- (b) $\frac{x}{1+x} < \log(1+x) < x \text{ für } x > -1 \text{ und } x \neq 0.$
- (c) $\exp(1) = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$

Beweis:

(a) Klar für x > 0 und für $x \le -1$. Für $-1 \le x < 0$ gilt:

$$\exp(-x) = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} < \sum_{n=0}^{\infty} (-x)^n = \frac{1}{1+x}$$
$$\Rightarrow \exp(x) = \frac{1}{\exp(-x)} > 1+x$$

(b) Es ist $\log(1+x) < \log(\exp(x)) = x$, da $1+x < \exp(1+x)$. Außerdem ist $-\log(1+x) = \log\left(\frac{1}{1+x}\right) = \log\left(1-\frac{x}{1+x}\right) < -\frac{x}{1+x}$. Daraus folgt, daß $\log(1+x) > \frac{x}{1+x}$ für $x \neq 0$ und $\frac{x}{1+x} < 1$. Wenn x > -1 und $x \neq 0$ ist, dann ist 1+x > 0 und x < 1+x, also $\frac{x}{1+x} < 1$.

$$\begin{array}{l} \text{(c) Multipliziere die Ungleichung} \ \frac{x}{1+x} < \log(1+x) < x \ \text{mit} \ \frac{1}{x} \ \text{für} \ x > 0 \\ \Rightarrow 1 \leftarrow \frac{1}{1+x} < \frac{\log(1+x)}{x} < 1 \rightarrow 1. \\ \text{Für} \ x \rightarrow 0 + \ \text{gilt dann} \ \lim_{x \rightarrow 0+} \frac{\log(1+x)}{x} = 1. \\ \text{Es ist} \ \log(e) = \lim_{n \rightarrow \infty} \log\left(1 + \frac{1}{n}\right)^n = \lim_{n \rightarrow \infty} \frac{\log(1 + \frac{1}{n})}{\frac{1}{n}} = 1. \\ \text{Also ist} \ e = \exp(\log(e)) = \exp(1). \end{array}$$

3.5.5 Bemerkung

- (a) Für $n \in \mathbb{N}_0$ gilt $\exp(n) = e^n$.
- (b) Für $n \in \mathbb{N}$ gilt $\exp(-n) = e^{-n}$.
- (c) Für $r = \frac{m}{n} \in \mathbf{Q}$ gilt $\exp(\frac{m}{n}) = e^{m/n}$, d.h. $\exp(r) = e^r$.

Beweis:

- (a) Mit Induktion: $\exp(n+1) = \exp(n) \cdot \exp(1) = e^n \cdot e = e^{n+1}$.
- (b) $\exp(-n) = \frac{1}{\exp(n)}$.
- (c) Sei m = 1. Dann ist $e = \exp(1) = \exp(n \cdot \frac{1}{n}) = (\exp(\frac{1}{n}))^n$. Es ist $\exp(\frac{1}{n}) = \sqrt[n]{\exp(1)} = e^{1/n}$ und $\exp(\frac{m}{n}) = \exp(m \cdot \frac{1}{n}) = (\exp(\frac{1}{n}))^m = (e^{1/n})^m = e^{m/n}$.

Abbildung 3.1: Vergleich der Exponential- und Logarithmusfunktion

Die Exponentialfunktion e^x	Der Logarithmus $\log x$
ist stetig und	ist stetig und
streng wachsend auf IR	streng wachsend in $(0, \infty)$
$e^{x+y} = e^x \cdot e^y$	$\log(x \cdot y) = \log x + \log y$
$e^x > x + 1 \text{ für } x \neq 0$	$\frac{x}{1+x} < \log(1+x) < x$
	für $x > -1, x \neq 0$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to \infty} \log x = \infty$
$\lim_{x \to -\infty} e^x = 0$	$\lim_{x \to 0} \log x = -\infty$
$\exp(\mathbb{R}) = (0, \infty)$	$\log(0,\infty) = \mathbb{R}$
5 4 3 - 2 - 1 - 0 -3 -2 -1 0 1 2 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

3.5.6 Definition von e^x für $x \in \mathbb{R}$

Für $x \in \mathbb{R}$ definiert man $e^x := \exp(x)$ und für a > 0 und $x \in \mathbb{R}$ ist $a^x := e^{x \cdot \log a}$.

Bemerkung: Für $r = \frac{p}{q}$ gilt:

$$e^{r \log a} = e^{\frac{p}{q} \log a} = \exp(\frac{1}{q} \log a^p) = (e^{\log a^p})^{1/q} = (a^p)^{1/q} = a^{p/q} = a^r$$

3.5.7 Hyperbolische Funktionen

Sinus hyperbolicus:

$$\sinh x = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

Cosinus hyperbolicus:

$$\cosh x = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

 $\sinh x$ ist stetig, streng wachsend (e^x und $-e^{-x}$ streng wachsend), ungerade. $\cosh x$ ist stetig, streng wachsend in $[0,\infty)$, streng fallend in $(-\infty,0]$, gerade. Tangens hyperbolicus:

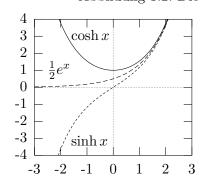
$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

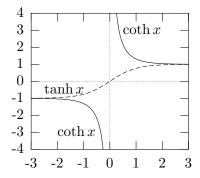
Cotangens hyperbolicus:

$$\coth x = \frac{\cosh x}{\sinh x} = \frac{e^{2x} + 1}{e^{2x} - 1}$$

Der tanh ist monoton: Es ist tanh $x=1-\frac{2}{e^{2x}+1}$ Damit ist $e^{2x}+1$, $\frac{1}{e^{2x}+1}$ und damit $\frac{-2}{e^{2x}+1}$.

Abbildung 3.2: Die hyperbolischen Funktionen





3.6 Die trigonometrischen Funktionen

3.6.1 Definitionen und Satz

Die Funktionen

3 Grenzwert und Stetigkeit

Sinus:
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

Cosinus: $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$

sind stetig in IR und es gilt:

(i) $\sin(-x) = -\sin x$ (ungerade Funktion)

(ii)
$$\cos(-x) = \cos x$$
 (gerade Funktion)

(iii)
$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$

(iv)
$$\sin(x+y) = \sin x \cdot \cos y + \sin y \cdot \cos x$$

Beweis: nur noch für (iii) und (iv):

$$\cos x \cdot \cos y = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} y^{2n}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} \cdot x^{2k} \cdot \frac{(-1)^{n-k}}{(2n-2k)!} \cdot y^{2n-2k} \left(\frac{(2n)!}{(2n)!}\right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot \sum_{k=0}^{n} \binom{2n}{2k} x^{2k} y^{2n-2k}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \cdot \sum_{\substack{j \le 2n \\ j \text{ gerade}}} \binom{2n}{j} x^j y^{2n-j}$$

$$\sin x \cdot \sin y = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \cdot \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} y^{2n+1}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \cdot \frac{(-1)^{n-k} y^{2(n-k)+1}}{(2(n-k)+1)!} \cdot \left(\frac{(2n+2)!}{(2n+2)!}\right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+2)!} \cdot \sum_{k=0}^{n} \frac{(2n+2)! \cdot x^{2k+1} \cdot y^{2n+2-(2k+1)}}{(2k+1)! \cdot (2n+2-2k-1)!}$$

setze n+1=m:

$$= \sum_{m=1}^{\infty} \frac{-(-1)^m}{(2m)!} \sum_{k=0}^{m-1} {2m \choose 2k+1} x^{2k+1} y^{2m-(2k+1)}$$

$$= -\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \sum_{\substack{j \le 2n \\ j \text{ ungerade}}} {2n \choose j} x^j y^{2n-j}$$

$$\cos x \cdot \cos y - \sin x \cdot \sin y = 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} \sum_{j=0}^{2n} {2n \choose j} x^j y^{2n-j}$$

$$= 1 + \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (x+y)^{2n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (x+y)^{2n} = \cos(x+y)$$

(iv) selber machen.

3.6.2 Hilfssatz

(a)
$$-\frac{x^2}{2} \le \cos(x) - 1 \le -\frac{x^2}{2} + \frac{x^4}{24}$$
 für $|x| \le \sqrt{12}$

(b)
$$x - \frac{x^3}{6} \le \sin x \le x$$
 für $0 \le x \le \sqrt{6}$

Beweis: Mit Leibnizkriterium:

(a) Es ist $\cos(x) - 1 = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$. Das Leibnizkriterium ist anwendbar, falls $\frac{x^{2n}}{(2n)!} \ge \frac{x^{2n+2}}{(2n+2)!}$ für alle n gilt,

d. h. falls $(2n+2)(2n+1) \ge x^2$ für alle n, d. h. falls $(2+2)/2+1) \ge x^2$, also falls $|x| \le \sqrt{12}$. Dann ist

$$-\frac{x^2}{2} \le \cos(x) - 1 \le \frac{-x^2}{2!} + \frac{x^4}{4!}.$$

(b) Hier ist genauso das Leibnizkriterium anwendbar, falls

$$\frac{x^{2n+1}}{(2n+1)!} \le \frac{x^{2n-1}}{(2n-1)!} \text{ für alle } n \ge 1$$

$$\iff x^2 \le (2n+1)2n \text{ für alle } n \ge 1$$

$$\iff x^2 \le 6, \text{ also falls } 0 \le x \le \sqrt{6}$$

$$x - \frac{x^3}{3!} \le \sin x \le x \text{ für } 0 \le x \le \sqrt{6}$$

3.6.3 Die Zahl π

Der Cosinus besitzt eine kleinste positive Nullstelle: $\frac{\pi}{2}$. Es gilt:

$$1,4\approx\sqrt{2}<\frac{\pi}{2}<\sqrt{6-\sqrt{12}}\approx1,6$$

Beweis: Es ist

$$1 - \frac{x^2}{2} \le \cos x \le 1 - \frac{x^2}{2} + \frac{x^4}{24}.$$

Die Nullstellen von $1 - \frac{x^2}{2} + \frac{x^4}{24}$ sind $\pm \sqrt{6 - \sqrt{12}}$.

Es ist $\cos 0 = 1$, $\cos(x)^2 \ge 1 - \frac{x^2}{2} > 0$ in $[0, \sqrt{2}]$ und es ist $\cos(\sqrt{6 - \sqrt{12}}) \le 0$. Nach dem Zwischenwertsatz hat $\cos x$ eine kleinste positive Nullstelle $\frac{\pi}{2}$, die in $(\sqrt{2}, \sqrt{6-\sqrt{12}})$ liegt.

3.6.4 Einfache Eigenschaften von Sinus und Cosinus

$$(a) \sin^2 x + \cos^2 x = 1$$

(b)
$$\cos(\pi/2) = 0$$
, $\sin(\pi/2) = 1$

(c)
$$\sin(x + \pi) = -\sin x$$
, $\cos(x + \pi) = -\cos x$

(d)
$$\sin(x + 2\pi) = \sin x$$
, $\cos(x + 2\pi) = \cos x$

(e)
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
, $\lim_{x\to 0} \frac{\cos(x)-1}{x^2} = -\frac{1}{2}$

3 Grenzwert und Stetigkeit

Beweis:

(a) Setze y = -x in (iii):

$$\cos 0 = 1 = \cos x \cdot \cos(-x) - \sin x \cdot \sin(-x) = \cos^2 x + \sin^2 x$$

(b)
$$\cos \frac{\pi}{2} = 0 \Rightarrow \sin \frac{\pi}{2} = 1 \text{ (oder } -1) \text{ nach (a), aber } \sin x \ge x - \frac{x^3}{6} > -1 \text{ für } x = \frac{\pi}{2}.$$

(c)
$$\sin(x + \frac{\pi}{2}) = \sin x \cdot \cos \frac{\pi}{2} + \cos x \cdot \sin \frac{\pi}{2} = \cos x$$

 $\cos(x + \frac{\pi}{2}) = -\sin x \cdot \sin \frac{\pi}{2} = -\sin x$
 $\sin(x + \pi) = \cos(x + \frac{\pi}{2}) = -\sin x$
 $\cos(x + \pi) = -\sin(x + \frac{\pi}{2}) = -\cos x$

(d) $\sin(x+2\pi) = -\sin(x+\pi) = \sin x$. cos genauso.

(e)
$$\frac{\sin x}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n} = 1 + \dots \to 1 \text{ für } x \to 0.$$

$$\frac{\cos(x) - 1}{x^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n-2} = -\frac{1}{2!} + \frac{1}{4!} x^2 \mp \to -\frac{1}{2} \text{ für } x \to 0.$$



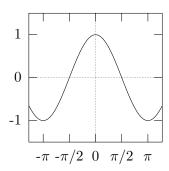


Abbildung 3.3: Sinus und Cosinus